molecular F...F and F...O distances are 3.02 and $3.03 \AA$, respectively. The $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, 2.648 (3) \AA, (Fig. 2) is not significantly different from the bond in the trichloroacetic acid dimer, $2 \cdot 666$ (5) \AA (Jönsson \& Hamilton, 1972). It is also comparable to the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bond in the non-substituted acetic acid chain structure, 2.625 (5) \AA (Nahringbauer, 1970), 2.631 (8) \AA (Jönsson, 1971). The dimer is nearly planar. The deviations of the atoms from the plane through one of the carboxyl groups and from the leastsquares plane through $O(1), O(2), C(1)$ and $C(2)$ are given in Table 2 and are very similar to those found in the trichloroacetic acid dimer. The $\mathrm{CF}_{3} \mathrm{COOH}$ molecule has a perfectly staggered conformation. The torsion angle $\mathrm{F}(1)-\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(1)$ is $29.1(3)^{\circ}$, compared to $11.5(4)^{\circ}$ and $6.3(1.6)^{\circ}$ in $\mathrm{CCl}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COOH}$, respectively. $\mathrm{C}(1)-\mathrm{C}(2), 1.526$ (5) \AA, is significantly longer, and the $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(2)$ angle, $128 \cdot 1(3)^{\circ}$, larger than the corresponding bond and angle in acetic acid, 1.478 (6) \AA and $121.3(5)^{\circ}$. Similar observations were made for the chlorosubstituted acetic acid. The opening of the $\mathrm{O}-\mathrm{C}-\mathrm{O}$

Table 2. Least-squares planes

Atoms defining the plane and its equation

$$
\begin{aligned}
& \text { I: } \mathrm{O}(1), \mathrm{O}(2), \mathrm{C}(1) \\
&-3.0703 x-2.7228 y-5.7464 z+2.8184=0 \\
& \text { II: } \mathrm{O}(1), \mathrm{O}(2), \mathrm{C}(1), \mathrm{C}(2) \\
&-2.7403 x-2.6854 y-6.1167 z+2.9345=0
\end{aligned}
$$

Displacements from plane (\AA)

	Plane I	Plane II
$\mathrm{O}(1)$	0.000	$-0.004(2)$
$\mathrm{O}(2)$	0.000	$-0.004(2)$
$\mathrm{C}(1)$	0.000	$0.023(3)$
$\mathrm{C}(2)$	$-0.103(3)$	$-0.006(3)$
$\mathrm{O}\left(1^{\prime}\right)$	$-0.110(2)$	$-0.243(2)$
$\mathrm{O}\left(2^{\prime}\right)$	$-0.110(2)$	$-0.244(2)$
$\mathrm{C}\left(1^{\prime}\right)$	$-0.110(2)$	$-0.270(2)$

angle is most probably associated with the different hydrogen bonding: dimer and chain, respectively. The CF_{3} group is similar to CF_{3} groups found in other structures (e.g. Lundgren, 1978) with an average $\mathrm{C}-\mathrm{F}$ bond of $1.332 \AA$, and average $\mathrm{C}-\mathrm{C}-\mathrm{F}$ and $\mathrm{F}-\mathrm{C}-\mathrm{F}$ angles of 110.7 and $108 \cdot 3^{\circ}$, respectively.

We thank Professor Ivar Olovsson for the facilities placed at our disposal and Mr Hilding Karlsson for skilled technical assistance. This work has been supported by grants from the Swedish Natural Science Research Council, which are gratefully acknowledged.

References

Coppens, P. \& Hamilton, W. C. (1970). Acta Cryst. A26, 71-83.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Hanson, H. P., Herman, F., Lea, J. D. \& Skillman, S. (1964). Acta Cryst. 17, 1040-1044.

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Jönsson, P.-G. (1971). Acta Cry'st. B27, 893-898.
Jönsson, P.-G. \& Hamilton, W. C. (1972). J. Chem. Phys. 56, 4433-4439.
Kanters, J. A. \& Kroon, J. (1972). Acta Cryst. B28, 1946-1949.
Lundgren, J.-O. (1976). Crystallographic Computer Programs. Report UUIC-B13-4-03. Inst. of Chemistry, Univ. of Uppsala, Sweden.
Lundgren, J.-O. (1978). Acta Cryst. B34, 2432-2435.
Lundgren, J.-O., Tellgren, R. \& Olovsson, I. (1978). Acta Cryst. B34, 2945-2947.
McCandlish, L. E., Stout, G. H. \& Andrews, L. C. (1975). Acta Cryst. A31, 245-249.

Nahringbauer, I. (1970). Acta Chem. Scand. 24, 453-462.
Nahringbauer, I. (1978). Acta Cryst. B34, 315-318.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Strieter, F. J., Templeton, D. H., Scheuerman, R. F. \& Sass, R. L. (1962). Acta Cryst. 15, 1233-1239.

Acta Cryst. (1979). B35, 510-513

1-Methylimidazolium Oxalurate

By Albert C. Wang and B. M. Craven
Crystallography Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

(Received 22 August 1978; accepted 7 November 1978)

Abstract

C}_{4} \mathrm{H}_{7} \mathrm{~N}_{2}\right)^{+} .\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}\right)^{-}\), m.p. $423 \mathrm{~K}, P \overline{1}$, $a=7.718$ (4), $b=8.062$ (4), $c=9.603$ (4) $\AA, \alpha=$ 69.34 (4), $\beta=62.52$ (4), $\gamma=67.22$ (4) ${ }^{\circ}, Z=2, D_{m}=$ $1.490 \mathrm{Mg} \mathrm{m}^{-3}$. The crystal structure determination was based on the X-ray intensities (Mo K_{Ω}) of 1779

reflections collected by diffractometer. Parameter refinement by the full-matrix least-squares method gave $R=0.058$. The longer carboxylate $\mathrm{C}-\mathrm{O}$ bond (1.259 vs $1.230 \AA$) involves the O atom which forms the salt bridge ($\mathrm{NH} \cdots \mathrm{O}, 2.78 \AA$) and another hydrogen bond.
(C) 1979 International Union of Crystallography

Introduction. Crystals of the oxalurate salt were obtained from a solution of 1 -methylimidazole and parabanic acid in absolute ethanol. Parabanic acid (imidazoletrione) was hydrolyzed (Andrews \& Sell, 1955) presumably with water absorbed from the atmosphere. This reaction also occurred when efforts to form a crystal complex of parabanic acid with 9 -ethyladenine led to a remarkable crystal structure containing parabanic acid, oxalurate anion, 9-ethyladininium cation and water (Shieh \& Voet, 1975), hereafter known as the adenine complex.

Crystal data* were measured with a computercontrolled four-circle diffractometer and graphitemonochromated Mo Ka radiation. Integrated intensities were obtained for 2152 reflections, including all with $\sin \theta / \lambda<0.59 \AA^{-1}$, using a crystal $0.35 \times 0.25 \times$ 0.20 mm , and $\theta / 2 \theta$ scans. The variance in an intensity was assumed to be $\sigma^{2}(I)=\sigma^{2}+(0.02 I)^{2}$ where σ^{2} is the variance from counting statistics. There were no corrections for X-ray absorption or extinction. The phase problem was solved by symbolic addition and

[^0]Table 1. Atomic parameters with e.s.d.'s
The atomic parameters are fractional coordinates ($\times 10^{4}$ for nonhydrogen, $\times 10^{3}$ for H atoms) with respect to the crystal axes. E.s.d.'s in parentheses refer to the least significant digit in the parameter value.
(a) 1-Methylimidazolium cation

$\mathrm{N}(1)$	$1678(2)$	$173(2)$	$5821(2)$
$\mathrm{C}(1)$	$492(4)$	$-608(4)$	$7466(3)$
$\mathrm{C}(2)$	$1436(3)$	$1943(3)$	$5144(2)$
$\mathrm{N}(3)$	$2794(3)$	$2105(3)$	$3677(2)$
$\mathrm{C}(4)$	$3944(4)$	$407(3)$	$3387(3)$
$\mathrm{C}(5)$	$3254(3)$	$-799(3)$	$4722(2)$
$\mathrm{H}(11)$	$130(5)$	$-135(4)$	$805(4)$
$\mathrm{H}(12)$	$-17(5)$	$-137(4)$	$741(3)$
$\mathrm{H}(13)$	$-30(5)$	$23(5)$	$803(4)$
$\mathrm{H}(2)$	$43(3)$	$292(3)$	$569(2)$
$\mathrm{H}(3)$	$288(4)$	$315(4)$	$302(3)$
$\mathrm{H}(4)$	$484(4)$	$27(3)$	$246(3)$
$\mathrm{H}(5)$	$354(3)$	$-204(3)$	$498(2)$
(b) Oxalurate			
$\mathrm{N}(1)$	$1010(3)$	$3711(3)$	$8360(2)$
$\mathrm{C}(2)$	$2545(2)$	$4303(2)$	$7169(2)$
$\mathrm{O}(2)$	$2624(2)$	$4998(2)$	$5791(1)$
$\mathrm{N}(3)$	$4184(2)$	$4096(2)$	$7546(2)$
$\mathrm{C}(4)$	$4378(3)$	$3380(2)$	$9000(2 ;$
$\mathrm{O}(4)$	$3122(2)$	$2756(2)$	$10214(1)$
$\mathrm{C}(5)$	$6364(3)$	$3419(2)$	$9003(2)$
$\mathrm{O}(5)$	$6621(2)$	$2723(2)$	$10281(2)$
$\mathrm{O}(6)$	$7521(2)$	$4163(2)$	$7694(1)$
$\mathrm{H}(11)$	$-10(4)$	$389(3)$	$820(2)$
$\mathrm{H}(12)$	$106(4)$	$327(3)$	$930(3)$
$\mathrm{H}(3)$	$521(3)$	$443(3)$	$679(2)$

extended to 252 reflections by the tangent formula (Karle \& Karle, 1966). Atomic parameters* (Table 1) were refined by a full-matrix least-squares procedure minimizing the function $\sum w \Delta^{2}$ where $\Delta=\left|F_{o}\right|-\left|F_{c}\right|$ and $w=\sigma^{-2}\left(F_{o}\right)$ and the summation was with respect to 1779 reflections with $I>2 \sigma(I)$. X-ray scattering factors were those of Cromer \& Waber (1965) for C, N and O atoms, and Stewart, Davidson \& Simpson (1965) for H. Refinement converged with $R=$ $\sum: \Delta\left|/ \sum\right| F_{o} \mid=0.058$.

Discussion. The structure of the 1-methylimidazolium cation is similar to that of 1-methylimidazole in its crystal complex with barbital (Wang \& Craven, 1979). Both rings are nearly planar (Table 2). There are small

[^1]
Table 2. Best least-squares planes

(a) Equations referred to the crystal axes in the form $A x+B y+$ $C z=D$ where (x, y, z) are fractional coordinates and A, B, C, D are in \AA

	A	B	C	D
1-Methylimidazolium cation	$7 \cdot 2509$	$3 \cdot 7158$	7.0689	5.4028
Oxalurate anion	-0.1042	7.1735	3.7022	5.7172
Urea group	0.0621	7.2673	3.6818	5.7813
Peptide group	-0.0867	$7 \cdot 1985$	3.6344	5.6697
Carboxylate group	-0.1488	7.0989	3.9003	$5 \cdot 8443$

(b) Distances of atoms from the planes (\dot{A})

(i) 1 -Methylimidazolium cation	(ii) Ox ((1)	
$\mathrm{N}(1)$	-0.007	$\mathrm{~N}(1)$	0.029
$\mathrm{C}(1)$	0.006	$\mathrm{C}(2)$	-0.003
$\mathrm{C}(2)$	-0.003	$\mathrm{O}(2)$	-0.015
$\mathrm{~N}(3)$	0.004	$\mathrm{~N}(3)$	-0.029
$\mathrm{C}(4)$	0.002	$\mathrm{C}(4)$	-0.006
$\mathrm{C}(5)$	-0.002	$\mathrm{O}(4)$	0.009
$\mathrm{H}(11)^{*}$	0.729	$\mathrm{C}(5)$	0.002
$\mathrm{H}(12)^{*}$	-0.798	$\mathrm{O}(5)$	-0.026
$\mathrm{H}(13)^{*}$	0.142	$\mathrm{O}(6)$	0.040
$\mathrm{H}(2)^{*}$	-0.004	$\mathrm{H}(11)^{*}$	0.110
$\mathrm{H}(4)^{*}$	-0.053	$\mathrm{H}(12)^{*}$	0.062
$\mathrm{H}(5)^{*}$	-0.068	$\mathrm{H}(3)^{*}$	-0.078

(iii) Subunits of oxalurate anion

Urea		Peptide		Carboxy
$\mathrm{N}(1)$	0.000	$\mathrm{C}(2)$	0.011	$\mathrm{C}(4)$
$\mathrm{C}(2)$	0.001	$\mathrm{~N}(3)$	-0.015	$\mathrm{C}(5)$
$\mathrm{O}(2)$	0.000	$\mathrm{C}(4)$	-0.004	$\mathrm{O}(5)$
$\mathrm{N}(3)$	0.000	$\mathrm{O}(4)$	-0.001	$\mathrm{O}(6)$
$\mathrm{H}(11)^{*}$	0.064	$\mathrm{C}(5)$	0.008	$\mathrm{O}(4)^{*}$
$\mathrm{H}(12)^{*}$	0.028	$\mathrm{H}(3)^{*}$	-0.057	$\mathrm{~N}(3)^{*}$
$\mathrm{H}(3)^{*}$	-0.028	$\mathrm{~N}(\mathrm{i})^{*}$	0.031	
$\mathrm{C}(4)^{*}$	0.016	$\mathrm{O}(5)^{*}$	-0.030	
* Atoms not included in the calculation of the plane.				

but significant differences in bond lengths and angles (Fig. 1) which follow the same pattern as was observed in comparing the imidazolium cation with imidazole (Craven, McMullan, Bell \& Freeman, 1977). Notable in Fig. 1 is the opening of the ring angle at $N(3)$ by 4.5° as a result of protonation.

The structure of the oxalurate anion is similar to that observed in the adenine complex (Shieh \& Voet, 1975), including the intramolecular $\mathrm{NH} \ldots \mathrm{O}$ hydrogen bond (Fig. 2). When the anion is subdivided the atoms within each of the urea, peptide and carboxylate fragments are almost coplanar (Table 2) as in the adenine complex. The torsion angles in the bonds linking these fragments (Table 3) show that the anion is slightly puckered from

Fig. 1. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ in (a) 1-methylimidazole (Wang \& Craven, 1979), (b) 1-methylimidazolium cation (present work). Largest circles represent nitrogen atoms, N(1) and $\mathrm{N}(3)$.

(a)

(b)

Fig. 2. Bond lengths $(\dot{\mathrm{A}})$ and angles $\left(^{\circ}\right)$ in oxalurate anion in (a) 1methylimidazolium salt (present work). (b) adenine complex (Shieh \& Voet, 1975).

Table 3. Torsion angles $\left({ }^{\circ}\right)$
The e.s.d.'s in torsion angles are 2° for angles involving H otherwise 0.3°.
(a) 1-Methylimidazolium cation

$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{H}(11)$	-122
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{H}(12)$	119
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{H}(13)$	-9

(b) Oxalurate anion

Present work Adenine complex

$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(4)$	-1.0	9.0
$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	-178.0	-179.0
$\mathrm{~N}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(5)$	-177.5	-167.3

Fig. 3. The crystal structure of 1-methylimidazolium oxalurate. Atoms are represented by 25% probability thermal ellipsoids.
planarity, but there is less puckering than in the adenine complex. Most oxalurate bond lengths and angles agree with those in the adenine complex, although the difference $(0.015 \AA)$ in the $N(3)-C(4)$ length may be significant. There is an interesting difference in the carboxylate $\mathrm{C}-\mathrm{O}$ bonds in the two structures, which appears to be related to the hydrogen bonding. In the adenine complex, both O atoms form two hydrogen bonds and the $\mathrm{C}-\mathrm{O}$ bond lengths $(1.238,1.241 \AA$) are the same within the experimental error ($\sigma=0.002 \AA$). In the 1 -methylimidazolium salt the $\mathrm{C}-\mathrm{O}$ bond with $O(6)$, which forms both the salt bridge and a second hydrogen bond (Fig. 3), is longer (1.259 vs $1.230 \AA$) than the $\mathrm{C}-\mathrm{O}$ bond with $\mathrm{O}(5)$ which is not hydrogen bonded.

There are three intermolecular hydrogen bonds in the crystal structure (Fig. 3). The shortest is the salt bridge between the cation $\mathrm{N}(3) \mathrm{H}$ group and the anion $\mathrm{O}(6)$.

The $\mathrm{N} \cdots \mathrm{O}$ distance is $2.78 \AA$ and the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ angle is 158°. The dihedral angle between the planes of the bridged molecules is 80°. There is also a hydrogen bond $\mathrm{N}(1) \mathrm{H}(1) \cdots \mathrm{O}(6)$ which links oxalurate anions head to tail to form ribbons parallel to the a axis. This has an $\mathrm{N} \cdots \mathrm{O}$ distance of $2.91 \AA$ and the $\mathrm{NH} \cdots \mathrm{O}$ angle is 175°. The oxalurate ribbons are crosslinked through pairs of $\mathrm{N}(3) \mathrm{H}(3) \cdots \mathrm{O}(2)$ hydrogen bonds which are relatively weak. The $\mathrm{N} \cdots \mathrm{O}$ distances are $3.05 \AA$ and $\mathrm{NH} \cdots \mathrm{O}$ angles are 155°.

This work was supported by a grant GM-22548 from the National Institutes of Health.

References

Andrews, J. C. \& Sell, I. T. (1955). Arch. Biochem. Biophys. 56, 405-411.
Craven, B. M., McMullan, R. K., Bell, J. D. \& Freeman, H. C. (1977). Acta Cryst. B33, 2585-2589.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104109.

Karle, J. \& Karle, I. L. (1966). Acta Cryst. 21, 849-859.
Shieh, H. S. \& Voet, D. (1975). Acta Cryst. B31, 21922201.

Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Wang, A. C. \& Craven, B. M. (1979). J. Pharm. Sci. In the press.

Acta Cryst. (1979). B35, 513-515

cyclo(-L-Prolyl-D-tert-leucyl-)

By I. Sklenář
Institute of Solid State Physics, Czechoslovak Academy of Sciences, Praha 6, Czechoslovakia
AND J. JEČNÝ
Institute of Macromolecular Chemistry, Czechoslovak Academy of Sciences, 16206 Praha 6, Czechoslovakia

(Received 13 October 1978; accepted 1 November 1978)

Abstract

C}_{11} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}\), orthorhombic, $P 2_{1} 2_{1} 2, Z=4$, FW 210.3, $a=10.942$ (2), $b=16.438$ (4), $c=$ 6.452 (1) $\AA, D_{x}=1 \cdot 20, D_{m}=1.14 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Cu} K \overline{\mathrm{I}})$ $=1.5418 \AA$ (graphite monochromator); the final $R=$ 0.046 on 794 observed reflexions $\left[F_{o}^{2}>3 \sigma\left(F_{o}^{2}\right)\right.$] in the range $0<2 \theta \leq 68^{\circ}$. The molecules are linked by hydrogen bonds to form chains $[\mathrm{N}(2)-\mathrm{H}(1) \cdots \mathrm{O}(1)$: $\mathrm{N}(2) \cdots \mathrm{O}(2)=2.894(4), \mathrm{H}(1) \cdots \mathrm{O}(1)=2.053$ (4) \AA, $\angle \mathrm{N}(2)-\mathrm{H}(1) \cdots \mathrm{O}(1)=153(3)^{\circ} \mathrm{J}$.

Introduction. Colourless transparent prismatic crystals of the title compound were prepared by Pospišek \& Blaha (1976) at the Institute of Organic Chemistry and Biochemistry, Praha. Our main interest was in the molecular conformation of the 2,5-piperazinedione ring with the bulky side chain of the tert-butyl group.

Measurement of integrated intensities of 2364 reflexions with $h \geq 0, k \geq 0, l \geqq 0$ was made on a Syntex $P 2_{1}$ four-circle diffractometer. The scan range $\left\langle 2 \theta a_{1}-1^{\circ}\right.$, $2 \theta_{c_{2}}+1^{\circ}$) and a variable scan rate from 1.2 to 29.3° $\min ^{-1}$ were used. Three standard reflexions showed no unusual fluctuations. The data were corrected for background, Lorentz and polarization effects and for coincidence of pulses. The quality of the measurement was tested by

$$
r=2 \frac{\sum_{\substack{h k l \\ l>0}}\left|I_{h k l}-I_{h k i}\right|}{\sum_{\substack{h k l \\ l>0}} I_{h k l}+I_{h k \bar{l}}}=0.048
$$

for both dependent sets of reflexions.
The structure was solved by direct methods with the tangent formula. For the set with the best figures of merit an E map was calculated and all non-hydrogen atoms were identified. They were refined anisotropically by full-matrix least squares to $R=0 \cdot 102$. An attempt to locate H atoms from a difference synthesis failed. We calculated positions for the H atoms with an isotropic temperature factor $B=3.4 \AA^{2}$. Positional and thermal parameters (anisotropic for non-hydrogen and isotropic for H atoms) were refined in three blocks (the last cycle in one block) to a final $R=0.046$. Weights $1 / \sigma\left(F_{o}^{2}\right)$ were used. The final difference synthesis displayed no features >0.2 e \AA^{-3}.*

[^2] (C) 1979 International Union of Crystallography

[^0]: * The unit cell given in the Abstract was used in the structure determination. The Niggli reduced cell ($a=7.718, b=8.062, c=$ $\left.9.132 \AA, a=92 \cdot 51, \beta=111 \cdot 10, \gamma=112 \cdot 78^{\circ}\right)$ is obtained by the transformation ($-1,0,0 / 0,1,0 / 1,0,-1$).

[^1]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34040 (12 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34026 (10 pp.). Copies may be obtained through The Executive Secretary. International Union of Crystallography, 5 Abbey Square, Chester CHl 2HU, England.

